
Lecture I

-

· Unsupervised
.

(A model of the hains
·Supervised. (A mapping from input

to targets)

· Reinforcement . (learn from mistakes)

· Imitation

Regression:
There is a underlying line concepted by noise.

en) predict

T
- activation. Y = g(a)Wo [

~--anoiseldias my/ In
*

features

Linear
regression :

[ ... W & targests!
↓

by minimizes the Sum Squared Error (SSE).

SS =-
-

↑ predicted



number of examples/patterns.

Solving for analytical solution : -- i = (xiX]"XTE

Gradient descent : --

weighted sur of inputs a" = wise"
Y

y(x) = 9(a)

gi
activation

Partial derivative of error wit weights

=
↓ gr

so
,

wi = wita Si

update rule.

= wit a t(t-g"Ja : "

Batch Learning

Online Learning -> SGD
,
change weight immediately

,
for each daza point.

(train asdata comes in stream).

y

"erceptrons
-

1 ------

Trying to fie a function of
- "

Binary threshold Unit !
(a classifier) .

↑
-

O
1
-

output laye
if [WiR: A

- -"Y y =
f

- I Lo otherwise.

↑
sum of weight.

& input layer .

X & Cregression) .

To make a neurally-inspired machine that

could
categorize inputs and learn to do this from example.

-



Perception Learning (perception convergence procedure).

ex)
Input Target ~are a mapping

0 0 O

0 I Output activation :

I 8 I
y = ! if

winio
no

I I I otherwise

(
If outpat = 0 and should be 0,

Error lower weights
Correction I
Learning

If output= 1 ach should be 1,

Conly corrected it when it is wrong).
raise weight

#

Form
a learning rule

:

Wi = Wi + d(t - 9)x ;
d is the learning race

Or wi = Wi + &: [ (5 = t - y)
.

difference
(Delta Rule

Guarantee : anything a perceptron can compute
,

can learn to compute and will converge.

We call Y1u5 = 0 the decision boundary where output changes from 0 to 1.

↓
is a Ide-1) dimensional hyperplane in h-dimensional input space.

-

Y(k) = 0
&

&

-

x2

"

Y(k) = 0- = w
,
x

, + W242 + Wo = 0 12-1 case)
.

7 u
& /

x
,

=> x2 =
- (W./Wa]s ,

- wo/we
-

- line form

↓
13For two points on decision boundary ,

st ce
&

Y(x*) = y(x() = 0

=> y(x
*
) - y(x)) = 0

=> nigh + No-win' -wo = 0

= wi(x" - xB) = 0



= i and vector (2"-cB) is orthogonal .

The distance I is then :

- Wo

1 = =

1wl where w = (w,
. . . wa).

Perception as a linear discriminant
.

:

·

a two-classhiscriminat is one such that

Y(x) = a =winX
S in C

, if a >0
no activation.

elsea in C2.

· For multiple out put

Y
, YC

O O out put

--1 ↑--- C is assigned ( if K = argmaxY: (x)
O 0 - -- O j

xu 21 xd input ↓

in particular , - Ki ↓each region is convex see

/
=

A" in Ri /Rin

implies an" + 11-aJa' in Ri Decision boundary is thus

Y: (x) =Yj(a) for Cach G, . . .

-

Logistic Regression
-

sigmoid function

- estimate of prob of C, or Le

I still a Linear classifier).

Y (4) = 9 (wic + w]

&
g(x) =

If e-se ,
logistic function as activation.

Derivation :

-

if we assume our
data is gaussian histribution (actually not in many cases).



theGata histributio p(u(c ,) =

I -
- 2
2π62

I

p(x((2) =

262
- /12

-

By Baye's rule
p(c . (x) =

P(x( . ) P()

p(a)

p(c(x) =
P(x(()P((2)

P(a)

Then
,

P(C , (2) =

P(a)(.) P(4)

↑ (2(c ,] P(C) + P(u)()P(()

I IDenote PCC1)= = F =

1 + e((B)
=

1 + e
(( +1)

I
-

In(P(k(()P( , )
&

=Tea (sigmoid of as
1 + e 1 (x((2) P(()

↑
prob class I follows a sigmoid as a function of

the log ratio oftheprob . of class G to the prob of class G
.

called the logit .

(the posterior

So P(C1) =

ea
= 9(a)

,

where a = In ) P(/)P( ,))
↑ (u((2) P((z)

can
be written as :

a = ux + No where

w =
M, - M2 and wo : - the t6

Most data do not follow gaussian distribution
,

no analytical solution and we

have to learn the weights

↓ gradient descent

If we use MSE (bad objective function for demonstration) :

~ =

wi-
2 wi

chain ruleIl =I <+-y)) - Easa)
for activationn



= Z !!, (t -3)(- 5'(a))

I ↓ =I;],
(t - y)(- g(())xi

wi = mi + I (t" - y
:

/919) a :

"

since for glas : Here
= wi + d z]]

,
(t" - yn)9(a)) (1-g(an))x:

" g'(a) = g(a)(1 - 9(a))

V Use Cross-entropy as objective function.

Generalization of logistic regression to multiple output.

O

o
output

I-
To turn output to prob.

↓

Softrax where Go =
&

ak =W= Wok = bias.

a =
wi

ak
LYx = g(91) =

e
Output sum to &

eak
:C eas

j = 1

Softmax as regression : (can trainch with GD)
- -

Ak = W kj = Wiph (20 = 1
,

Wo = bias).

P(((2) = 3 = g(ak)=
#Activation :

J =g(a) = max(9
, 0) : ReLU

y= g(a) = tanh(a) i tank

-1



· Create new feature from old feature for learning (oth fashion).

Forward Propagation & Backward Propogation :

--

( ~ ---

Error -/1- Chidden,"
Activatioa

u O
-

--I- I ⑰glai , ai1 - &---U &8 00 -

chain rule of grahent

⑰iZi, as

Back
prop. Learning : Wij = Wij-

, (Zi mean output of hidden wit or input).

I is objective·

=
every form is 0 except i= e.

= Zi

so zi = g(9i) -> aj( (

Wij

logistic regression (
· Define 5 =

- i = wij + (t) - 3)mi

So
,

we have t , = -Sjzi

By delta rule
,

wij wij- = Wistj

(weight changes in proportive to the input and the helea at that connection).

For output unit
,
helta rule isnij+ (tj -

Y
; ) zi

For hidden unit

,
idea : ak -- Akan

↑* Tujk

zj = g(aj)



So
,
herivation: It

-
: independent of

loa
term is o

i Gzj
except i = j-

Since =- Wi

=gi-derivative of
activation.

Thus
,

we derive that = -g(;) [SkWik ,
if j is hidden unit.

Since delta is - 8 = gla;) &Wil.

Learning :mWis-dn = Wij +d;

in which
↓ fj

= (tj - Y; ) if j is an output unit.

↓ Si = 5 (9 ;)[8kWik if i is a
hidden unit

Crecursive definitive of delea).

Fur hiddenuit
,
the idea is

Sk

⑫ . -- O Back
prop is linear operation.

& wil - Vanishing/Exploding gradient
As result of chain rule of

, fj = 9(9;) [8k Wil
activation.

-

T ↑
activation

of self node sum of previous

delta nohe times weight.



Conline) Back prop :

· present pattern to network
, feel forward until output.

compute & (usually t - 3)

· backprop 8 through network
. Every unit has

adelta.

· update wij

Wij Wij + &S
; Zj

Depend on initial condition
,

backprop gives many solution.

(highly non-convex network) -

Learn internal representation through hidden units.

en) XOK symmetry
arouch center

T -- -[ hinhen->

·-S /1
O O o S↑II /I/IVIS·

ninten
-> O
-

output

L

en)
- 1O

- 3 --- +s

+
① Q j
+3) ↓-3 9

- I
-

O

(2) NetTalk Architecture

· input uses a one-hot

averaging vector in tree Structure (hidden unit).

en) Hinton's Family tree



Objective Function & MLE :

-

likelihood prior
Maximum Likelihood.

W that maximize P(W/D) =

PIDIW) P(N)

want P(D)
normalizing constant

↓

maxP(w(D) = maxP(D /W)
↑

↓ maximiza likelihood

How we moded the data

=%

-Finh
parameter by argmax L

= Inc = In plans

M,
G

Istanhard argin - In paydistributire
example)

---

---

Modeling input-output data :
= leads to setting M

to empirical mean
.

= (c
,
th) = (c) p(an)

- InL =

-
(Inp(t() + (np(x2))

.

-
It" - h(x1))

<

· Assume gaussian noise
262

nus < model h. P(t"() = 62e

WFigaussian noise

=

↳- (for all&

I

I datal
↑ = /

&

I
/

I

The error (negative log likelihood).

Cross - Entropy :

E =-InI
Y (a) = P(c , (21)

It"-e(n))+:")Modeling two categories is like
-

constant
modeling coin flip

sun squared loss !
W
Bernoulli distributive

↓



p (t (k) = (yny
+

(1 - yey)
- -)

if t = 1
, PLaken) = ya (1 -ye)"" = y!

So
,

the likelihood :
1 = *PLE = yet y - yey"

- 2)

n = 1

- Inc = -In eyest" (1 - yey"
- a)

=
- In (y()

+

(1 - yey(
- +)

Yet : - (g) + (1 - t Y (n(1- 3)
n = 1

Cross-entropy euror

Entropy : a measure of information in a message about a random variable.

#4)log((4)

Entropy of distribution
:

- I O(CV) In P(a).

↓
Cross entrope : -In

,
P(en) 1.P(y").

Multinomial Regression :

P(( (2) = Pickar)
,

th = 1 if from category
1

,

0 otherwise

=> p(t((x) = (,/

=>P=

Siamese Neural Network :

↓
"trained to more output closer or further apart .

"

if h
,

12 from same category
,

minimize hise and 92.

-- different- -maximize
---

The loss function :
L(W,

Y ,*, x2) = (1 - Y) [ (Dw)* + (Y) = Emax(o
,

- Du)2.
↓ Pw(

, 2) : 11 F(?) - G - (2) /2
· D is histance between onepues of two networks j
· m is a margin. output vector

· Y is I for a "different" pair O for "same" pair.
of network on stimulus X.



Emeralization

Deal With Overfitting ?

· More data-> Pata Augmentation :

· Regularization .

es) take different crops of the data or resize it.

↓
reduce model complexity (J = E + X C)

·L2 -> minimize IWIl
,

weight smaller in proportion to its size.

· L -> minimize IW)
, neight smaller at a constant rate .

· Minimize C = 11 W1K/(11W/" + 1)
, penalize big weight less while penalizing small weights more.

· Proport

=> probabilistically turn off some fraction of hidbe units.

· Early stopping

--

: Add noise to inputs/weight/hither unit activations.

↓
make model

more robust to perturbations.

HeralNot Tick :

& : MatchLearning

1 get one example 1 get one example
mini-batch learning.

- > by running a
2. compute gradient 2. compute gradient ( small batch of data

3
. change weight 3. add to running average each time changing

the weight
4. If seen all example

, reshuffle 4. If seen all example
,

change weight
↓

efficient

hufflingbate before partition to mini-batch due to matmal.

↓
should havehiverse

hata representation .

A un input :

idea
: 24) if all positive inpat , Wij = Wij + dfjk :

-

same sign for all weights.



if his are all positive, then the weight changes are + or --

eas highly correlated variables optimization

~ j

G - = got two different infor

.~

~

~

~

S

~

↑

W -~ ~
~

!= 0 ... I

en) different scale of input

PCA -> shifts mean of input variable to 0.

· decorrelates the input .

· throw
away dimension with smaller eisuvalues

. (himensionality reduction).

· divide by stanhard deviation
,

make them all of equal size.

Ans. Z-scoring :

-

-

-

Different activation function:
-

problem: standard signoide makes all input to next layer positive.

recommented sigmoid : +(4) = 1
.

7159 * tanh (0.
667().

· f( +1-1) = +1- 1 (if input has unit variance
&

output has unit variance).



Weight-Initialization:

Weight cannot initialize to 0

if initialize to 0 => Gis of the hidden will all be the same.

↓

weight from each input
he the same.

Weight initalization coordinated with :

· input normalization

· choice of signoid.

Suppose U : mean O
,

unit variance. Wij mean o
,

On average,
SiD of aj =X

will be :

Var(Xw) = Var(x) Var(w) + Var (x) (E(w))" + Var(w)/E(X))"

= Var (W).
-

So
,

Sir of ai = Fat) = Filwijs

To let 6(aj) = 1
,

we see wis to be Ent
where M is the fan-ie to vole

j
.

assume input have been normalized
,

and sigmoid is flu) = 1
.

7159tank(42).

Inentively , if hidhen unit has big fan-in
,

small changes on many of its incoming

weights can cause learning to overshoe.

=> smaller incoming weight when fan-in is big
,
and vice-versa.

Batch Normalization
-

Then : normalizes all inputs and inputs
~
reachhidden layer throughout the network.

Con a per
unit basic

,

over each minibatch).

1. E-score each inpue variable over mini-batch.

= where Hi
,

6:

:

are men and variance ofai

↑

net input to a wit at any layer of the network.



2
.

Allow network learn to unho if necessary :

= Y:: + Bi

-j
learnable parameter

Momentum
-

y
weight change at time t

- w(t) = Y (t - 1) - d(t) ·previous
information .

( sum of previous weight change
and the new gradients .

direction of secepese descent does

How it behaves : not point at the minimum.

-w(0) : y-a) (by solving recurrence relation)
·

Nesterou Methods :

first make a big jump in direction of previous accumulated gradient.

then measure the gradient where you end up
and make a correction.



Gij (t) = g;j(t - 1) + 0
.

05
.

( (t) (t-1)))0captivelearning race : ↑
· increase if gradient(is)

heas not change

&wij =- - ·decrease otherwise.

sign
.

↓
global local gij(t) = g:j(t - 1) = 0

.
93

.

learning adjustment.
rate

=) big gain decay rupidly when oscillation starts.

Apapeire learning race only heals with alignedeffects.

↓

Apaptive learning rate affect individual

weights
,

which charge the learning
rate along that

axis-

↓resilient Backprop (Rprop) :

Only for full-batch learning :

· increase step size for a weight multiplicatively (tires 1
.

2)mthe signs of
its lase two gradients agree

-

· otherwise
,
decrease the step size multiplicatively (tines 0

. 3).

Does not work for mini-batch learning :

Kprop is to use the grahient but also divide by the size of the

I graGient (sign(2): )
,
problem is that we divide by a different

number for each mini-batch.

~

Solution - RMS prop :

keep a moving average of squared gradient for each weight.

M can Square (w, e) = 0
. 9 Mean Square (W,

+ - 1) + 0
.

1 (fF/fu (ts) "

Then
,
hiride the gradient by Squareti,t).



-envolutionalNetwork
: (CNN) .

Problem : · Large images size (1140 x 648)

Properties

off:Nearby Pixe creatwithnaby is a
locality

Real World
-

Image stationary statistics
-

-

· object doesn't depend on its location in image. : translation invariance

I object made of parts : Ampositionality

-

Why CNN useful to solve above problem ?

H

·

"

Locality" : small
,

local receptive field and learned features (kerrel).

· "Stationary statistics" : replicated across the image

(if a feature is useful in one place ,
it's useful in others).

· "Translation invariance" : spatial pooling .

·

Objects are made of parts : receptivefields get larger deeper in the net.

~
size of visual world that innervates the neuron

Receptive field ~ Visual feature in visual world that most stimulate neurve.

- -

L
Convolutional Block

.

-

& 3 neurons

each one complete a different features.

↓
computation is exactly the same

(inner product of weights and Pink patch).



Activation Maps
-

pooling -> =) ·

2x2 set of response to I number (Translation Invariance) .

(14 size)

convolution leads totequivariance.

(shifting number in different location dees
not affect the

feature map).

&

I Overview ofCornets.
Image Nee Data S

I
· Feed-forward

Alex Net & layers I - Convolve input.

↓
VEG 14 layers

I - Non-linearity (rectified linear

↓ I
- Pooling (local max)

-

Google Net 22 layers I · Superviseh
↓

I volationfilter trained by back prop.
Res Net 152 layers I

Images
-> Convolution -> Non-linear -> Pooling

-> Feature Maps
(filter)



↑o From Stanford (S23In
.

CNN

en) (12 filters)
Isoftmax) .

INPUT -> CONV -> RELK -> POOL -> F(

(32x32x3] [32x32x12] [32x32x12] [16x16x12] [ (x 1 x 10]

conv RELU POOL FL

contain

parameters X X

hyperparameter X X X

InvolutionalLayer

· each filter will produce a 2-D activative map.

· stacking activation map along the depth dimension produce the output volume.

· connec each neuron to only a local region of the input volume

Creceptive field) .

·The extend of connectivity along the depth axis is always equal to

-

thedepth of input volume.
-

en) input
volume [32x32x3]

receptive field (filter size) [5x5x3]
.

then
a total of 5x5x3 = 73 weights.



er) input volume [16 x 16x 20?
.

receptive fielde [3x3x 201.

then a total of 3x3 :
20 = 180 weights.

I

I
Three hyperparameters to control

output volume
-

share the same
I

receptive fielde.
but not the 1 Depth : # of filters (k)

same weight.

1 Strike : # of jumps
when filer mores

· zero-padding : whether to pah inputI
· W

: input volume size
volume with O around the border.

· F : receptive fieldsize
---------

S : stride

· P
: amount of zero palhing

!
7 - 3 + 2 . 0

=-
I

minii T = 5X3 output.I
-

- 4 + 1 = S

I 7x7

choice of Stride is important
to ensure that the above divisive

stride = 1
, pah = o

Yields an integer . --------
I

Paranter sharing.

Thus
,

to have input and output
↓-

the same size
,

we see zero padding
I Since we are using filter striking over

P = (F - 1)/2 I
the images ,

the # of weights will be

I

FX ) # of filer) X (depth of output) .

I

I This is guarantee by translationally invariance,

If detecting a feature is important at some

I
location

,
it should be useful at some other location

as well.



If learninghifferent feature on different location of images is necessary ,

then its

common to relax parameter sharing schema

↓

Locally - Connected Layer.

Coor a complete visualization

"coolinglayer

· progressively reduce the spatial size of the representation to reduce the

parametes .

g W
.,
H
.,

D
, representing input volume size.

· For pooling layer ,
it requires two hyperparameters :

· spatial extent F

↓d Stride S

Then output volume :
We = (W. F) /3 +1

Ha = (H ,

- F)/s + 1



1
c

= P,

max pooling

Convnet-Architectures

I lost common form :

INPUT -> [CON -> RELU] x N -> Poor ?XM
-> [FC -> RELUIxK -> FC

↑
optional pooling



Filtering
-

· (weight learned hurning training)

each unit looks at local window.

· same feature computed every-here.

Non-linearity
-

· ReLU Capplied per-pixel).

· output :
max /0

,
inpue) .

Spatial Pooling
-

sum or average useh lessI
· max is best

applied to each file layer separately.

Stride : how far to slide over each image

role : invariance to small transformation.
larger receptive fieh.

Component of each layer :

pixal/feature => filter with learned dictionary =) Non-linearity

~al load max pooin~ ↓

· Batch normalization. Output features .

How
to choose architecture ?

· Hyperparameter

· en) # layers
,

# feature maps
, params of feature maps.



· Cross-validation Best practice :

· width : 3

Grid-search/random-search .

·Strike :1

zero-padding : I

Trick
: Stack convolutions

,

then usempooling.

conv-> cour
-> max pooling

Invariance Abilities
-

Translative (Vertical) :

Scale Envariance :



KeepModel :

iden : design one nularstructure
,

then juse and more of them

3 XS cour layer better than single 7x7 by non-lineality.

· Network-in-network
:

add two per-pixel fully connected layers before pooling.

-

I Conv -> II Con -> IX1 Coerl
-

NiN Block

global average pooling.

replace fient fully connected layer : one feature map per category.

· What is IX1 Coor ?

(36 x 36 x 64] > (36x36x32]
.

IXI Con

with 32 filters

Leach filter size (1X1X64)
, performs a 64-him dot product).

= essentially a dot product of filter weights and 64 chanels

advantage : complete control of compretation !!!

RitualNetwork

idea : introduce "pass through" into each layer.

H

only reside needs to be learned. (the network learn

how much to change X

identity F(n) = H(u) - x
.

X -> weight laye. I weight layer -> - rele

- y

F(u) F(x) +X = H(u)



alizationfor higher layer network :

Max unpooling

· max activation from feature map associated with each filter.

· beconve to project back to pixel space.

· pooling switch .

Training Tips
-

· Annealing learning rate .

- > start large
,
slowly reduce

· Visualize feature map .

·

Training hiverses -> decrease learning rate

· Network underperforming -> make net larger.



Recurrent-Network :

Represent time in network ?

↳
wap time into space↳

map time into
state of the network.

Time -> Space
.

-

We- 2

-· Anso
regressive :

we +

-
input (t-2) inputCt-1) Input/

· Feed-forward new : inpult - 2) inpuelt- 1)

↓ I
bidden

↓
input (+)

TState

· use activation memory :

new things are processed based upon
what has come before.

(network seats) .

&

input -
> hidden ->

Output

Y y
= O Jordan net

&
inpue -> hidden ->

output

② Elman ex (simple recurrent net).

oneque
- > hidden -> outpare

Y



equivalently,
lone-step backprop through time).

input > hidden => Onepue

↓ .., copy back

hidden (t-1) <previous state).

Unrolling networks in time.

· calculate total gradient over time

A
as an average and then modify

the weights.

I ↓
A

·

propagate activation toward in time

(Ex(t) ,
EB(t) ... >= (t - 1)

· propagate delea backward.

es) We += dG(t) za(t -1) · uphate weight,

Hard to train b/2 backward pass is linear.

problem of exploding/vanishing gradient : -> Switch logistic to RaLl.

S

· weights small
, gradient shrinks exponentially S

In KNN
, we can :

· weights big ,
gradient grow exponentially.

I exploding gradient :

I

limit length of gradient vector

(gradient clipping)

· vanishing gradient :

skip connection



RNN for language generation :

--

h(t) = 6 )Wher(t) + Whnh(t- + bu)
·

<

j() = softmax (Wynh't + by)

A idea

· into gets into cell when "write" gate on.

· info stays in cell when "keep" gate On

keep
· into read from well when "read" gaze On

->⑮
#
M
⑪↓Doutprei

fromDuea of
RIND rese

(LSTM)
.



forget outputace
gate

inpre
gate

inn42
I

modulation

LSTM Forward Pass :

g(t) = 0 (Wgad) + Wind- + bg) input modulation

i
(t)

= 6 (Wid2') + Winhct-1 + bi) input gate

f() = 6 (Wfn2() + wthh
- "

+ by) forget gate

p(t) = 6 (Wort) + Wohhet-1 + bo) oneput gate .

S
(t)

= g(t)8 ;
(i)

+ g(
-

1)0f(t)
---

h(t) = g(t)0p(t)T ↑ control forget
input modulation

marchitecture

KIN as generative model

·

generative text model...

·

Sep to See

Image to text

---



Memory is a matrix of linear neurons.

& O O O crow as a "work" of memory).

NI =
O O O O

8 O ⑧ O

index row as i = 1
,

2
,

3.

r+
E [We(i)Me(i)



InformerNetwork

Map time into space using maredweights
↓

communicate via Attention

↓
when you focus on particular aspect of your enr.

·Overt attention : more your eyes toward something
-

· Covert attention : direct your attention to something without
-

moving your eyes

How to direct attention in Neural Nee ?

↓

softmax + multiplicative connections. (Content-basch Addressing) ·

w: ·(i) <
exp(B-k[ke

,
Me(i)]) en) M =

S I 41

I 23 4

2j exp(B= k[kt , M+ (j)])] 2 728

key k = ( 3 ,

1
,

0
, 0).

attention weight : Wa = 10
.
998

,
0

.

001
,

0
. 001)

.

read
: re =[Weli) Medic

So
, re = (2 . 997

,
1

,

007
,

3
.

997
,

1
.

010)

~ (b
,

1
,

4
,
1)

emerector was computed by the network.

Chynamic
,

network know what it was looking forl.

· Attention weight filtered the memory now via multiplication .
-

· Match b/t key and memory
hone have to be perfect.

? -> decoder needs different information at

Why transformer different time steps .

· train much faster

· process each position in parallel.

Attention-based methods - problem with recurrence.

No parallelization since hidden states all

depends on previous hidden states.



=
attention rector compre dynamically

-ech to gate the previous hidden state.

each layer computes a different

-ansformer Network
"

< function.

communicate
via attention ->

(Encoder)
.

F
3aloyY

of network for
every input position .

Cherober)

prediction
token

i inner produce attention.

retrieves
· each tower generates a vector that

info from represents what it is looking for . (Quers
all encoder secte.

· each tower generates a rector that

represents what information it has
. (kee)·

Query + Key

=> allow one tower to select information from other

towers .

(dynamically receive itself and communicate

between work meaning to construct sentence

meaning).



(query vector) (Wkh :
)

S

In the ith higher vector

=> softwax ((Wih .]"(Waha) ,
(Wihz)"(Wohr)

,

- - -

- key vector
... (Wihn)"(Wahn)/ a.

- - I

query Vector ↓ -

---
- ↑

softmax "interest" -

-

tower 2 query

ractor over 11 hime-- dot probrewvector . -

-

- all tower's key

idea : the most similar key
and query vector will be a peak

in softmax ,
selecting where to obtain value.

In matrix notation :

Whey H = K (key)
headeattention

Waves H = Q (query) - allowing the network to pay

L

Wvalue H = v (value attention to multiple locations

in the input at once.

result : softmax (KQ) x

Full Transformer Architectura ↑

-
(Encober) (Decober)

.

- - ,

" - "

i

--
- ...



Generative Pre-Training 2
.

0 (GPT 2
. 07

↳ traine to predice next work in a massive dataset.

Image Transformer
· Takes in patches of image (no convolution)

what it is learning ?

encoher only + classifier.

Universal Transformer Network :

&) shared weights between different layers

Cnnrolled recurrent network - same computation is performed over and over).

Each tower can decide alaprively how

many iterative to run.

- between layers.

O



DeepNee and Atari

Agent learns C policy #

Learning to act in a world.
#(s) = P(a, 42

,

... an /S]

② & action Az function from states to action

reward re

probabilities.
environmentL
E

agent

O St+2

rt+3

I
-

raise prob . of action as when

Statest ↓

⑤ .

it was a good more
,

lower it
at At+ 2

1if it was a bad more.

en) PONE Policy network

ran pixel Network

(previous - current image) -- -
State(s)

Ti - O·

--
j- action

# (s) = P("up" (s)
-policy(11)

At the end
,

we use-mmm ofthe reward on the gradient

and apple it to every gradient we produced over the whole game.

= win -> encourage actions that led to win

lose -> discourage actions that led to loss.

Policy gradient :

① At each step ofplay
,
sample from the softmax distribution at output :

# (3) = 10 .

1
,

0
.

02
,

0
.

6
, . .,

0
.01)

↑
network

, mapping from states to probabilites of active



② Treat the sample as "teacher"

t = 10
,

0
,

1
,

0, . . .,0

for state/action pair.

③ Compute weight change ,

add them to a running average of

weight change
. (Some form of "gradient")

① Multiply weight change by the sign of reward.

③ change the weights after one game.

TD - Gammon-Alpha Go

goal of learning :

maximizing term experie remat.

LetWe be reward at time to

↳
maximize Rt = ren + Yretet Y "rest ...=x ret +

OIYE1 is the discount rate.

↓
ensures that expected reward converges.

Policy : TLS
, a) = prob .

that Ge = when Se = S.

State should satisfy Markov Property :

model-based and Model-free.



Value Function :

V
+
(s) = expected long-term return of being in this state

, following policy it



T1 - Gammon.

· first application of learning value function using
NN function approximator·

representation of boarh as inque

· learned value of board position as output.

weighed upheave using emporal difference rule on every more.

↓

current estimate updated to be closer to next boards value

TD rule
I

control temporal credit assignment of
how much of anerr detected at a

W + H - We = d) Ye - Ye) given time seep- feeds back o

previous estimate

expectede value of boarh position.

(will be minimized when Yet -Ye = 0).



Alpha-Go

· Train~policy
networks by supervised training on expert positions.

I &
One is one is keep and accurate

DW =

G + In (1)
sign(1).

shallow and fast ↓
Ju

↓ train another network by policy gradient method.

used for rollouts

↓
Afte supervised training ,

network is improved

by playing itself.

A 3rk network : value network trained to prehice winner from every state.

↓

from every state seen huring play, train to prehice win rate.



masking then

Masked tencoder
reconstruct in

pat in pre-training.
BER T

After pre-training ,
use a -pladecoder-! ↓

achieve gooder
result with

Step O : break image with non-overlapping patches minimum decoder

② : mask 75 % of patches .

0
: positional encoding of the patches.

④ : learns to reconstrut the whole image.

· self-supervised learning without
any examples.

·

self-supervised learning with few data argumentation.

(advancedML/Al)

↓
· agent learn as much as they can about the world without interaction

· differentiable architectures for planning and reasoning
(by observation)

.

· learn multi-level abseration through long-term prehitive and long-term planning.


